/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Broker Il
Object References

/v TeleMed Limitations

AARHUS UNIVERSITET
« TeleMed was a three-wheeled bicycle ©
— Only one object . TeleMedServant
— Only one class TeleMedServant
— Object id was given by domain Patients unique ID

« Thatis, CPR is provide to TeleMed — allow getting Inger’s data...

« We need to ride an ‘ordinary bicycle’, like HotStone
— Multiple objects Multiple Cards, Heroes
— Multiple classes Card, Hero, ...
— ‘new StandardCard()’ On the server!

/v New Case: GamelLobby

AARHUS UNIVERSITET

Story 1: Creating a remote game. Player Pedersen have talked with his
friend Findus about playing a computer game together; they both sit in their
respective homes, so it must be a remote game, played over the internet.
They agree that Pedersen should create the game, and Findus then join it.
Pedersen opens a web browser and opens the game’s game lobby page. On
this lobby page, he hits the button to create game. The web page then states
that the game has been created, and displays the game’s join token, which is
simply the unique string “game-17453”. It also displays a play game button
but it is inactive to indicate that no other player has joined the game yet.
Pedersen calls Findus to tell him the game’s join token. Next, he awaits that
Findus joins the game.

Story 2: Joining an existing game. Meanwhile Findus has entered the same
game lobby page. Once he gets the join token, “game-17453”, from Pedersen,
he hits the join game button, and enters the join token string. The web page
displays that the game has been created, and he hits the play game button,
that brings him to the actual game.

Story 3: Playing the game. Pedersen has waited for Findus to join the game.
Now that he has, the play game button becomes active, and he can hit it to
start playing the game with Findus.

AU CS Henrik Baerbak Christensen 3

/v

AARHUS UNIVERSITET

 Side note

— Perhaps a bit
‘convoluted’ design
but...

— Lots of ‘remote
references’ to pass
to the clients...

AU CS

() ()
T TN
P Y
/! K / \
P PN

Dynamics

:Gamelobby

player1 player2
' | createGame
e p [<<create>>
< | — | fa:FutureGame
| : fg
I ! getJoinToken ;
o . -
[|
fi | |

Player1 gives player2 the [_ token |

join token !
| - T |
b joinGame(token) |
L , > <<create>> |
1 I 1 ™ game:Game
' ' setGame(game)

|
: =5 J >|:| I
| | fg I
| | | !
| | | !
| | | !
| | | !
| | | !
I : getGame : i
® ' - |
| | !
L_:_.. : | |
: [game | |
! ! getGame | !
I [.’ﬂ |
| : =T . :
: I game | |
Henrik Baerbak Christensen 4

/v New Case: GamelLobby

AARHUS UNIVERSITET

Story 1: Creating a remote game. Player Pedersen have talked with his
friend Findus about playing a computer game together; they both sit in their
respective homes, so it must be a remote game played over the mtemet
They agree that Pederse - 2 2

Pedersen opens a web b _
this lobby page, he hits t Challenge:

that the game has been ¢ a) Server creates game object
simply the unique string b) But only when two players enrolled
but it 1s inactive to indic

Pedersen calls Findus to t . : :
Findus joins the game. ... by creating a ‘FutureGame’ object as stepping

stone

Story 2: Joining an exist
game lobby page. Once he : 2 -
he hits the join game button, and enters the]om taken stnng The web page
displays that the game has been created, and he hits the play game button,
that brings him to the actual game.

Story 3: Playing the game. Pedersen has waited for Findus to join the game.
Now that he has, the play game button becomes active, and he can hit it to
start playing the game with Findus.

AU CS Henrik Baerbak Christensen 5

/v (SideBar)

AARHUS UNIVERSITET

« Actually, | used a similar system to implement the
(crude!) lobby system for the hotstone.littleworld.dk game
server

HotStone Game Server (Alfa Release)

Create your Game C O littleworld.dk

Select the variant you want to play, and press 'submit'.

© AlphaStone

Qo :> HotStone Game Server (Alfa Release)

© DeltaStone
O EpsilonStone
© EtaStone

© ThetaStone
® PhiStone

HotStone Game Parameters

| submit |

Please record this Game ID, as both players have to enter it into their respective game clients.

PhiStone is the most advanced one, and ‘almast fun to play!... - Henrik

Game ID = mus32tiger6S

Once you have recorded the |ID, you may Click here to read instructions on how to start the client.

And you can then close this web page. It is no longer needed to run the game.

... have fun - Henrik

AU CS Henrik Baerbak Christensen 6

eV Roles

AARHUS UNIVERSITET
GameLobby

- Singleton object, representing the entry point for creating and
joining games.

FutureGame

- A Future, allowing the state of the game (available or not) to be

gueried, and once both players have joined, return the game.
+ Provides an accessor method getJoinToken() to retrieve the join

token that the second user must provide.
Game

- The actual game domain role.

AU CS Henrik Baerbak Christensen 7

/v Test Code View (Client side)
AARHUS UNIVERSITET

FutureGame playerlFuture = lobby.createGame(playerMame: "Pedersen™, playerLevel @) ;
assertThat (playerlFuture, is(not{nullValue())));

String joinToken = playerlFuture.getJoinToken();
assertThat(joinToken, is(not(nullValue())));

Pedersen must tell

// Second player - wants fo join the game using the token .
FutureGame player2Future = lobby.joinGame(playerMame: "Findus", joinToken); Findus what the

assertThat(player2Future, is(not(nullValue()))); token is...

/i Now, as it is a two player game, both players see
// that the game has become available.

assertThat(playerlFuture.isAvailable(), is(value: true));
assertThat(player2Future.isAvailable(), is(value: true));

// And they can make state changes and read game state to the game

Game gameForPlayerl = playerlFuture.getGame();
assertThat(gameForPlayerl.getPlayerName(index: @), is(value: "Pedersen™));
assertThat(gameForPlayerl.getPlayerName(incex: 1), is(valuer "Findus"));
assertThat(gameForPlayerl.getPlayerInTurn(), is(value: "Pedersen"));

// Make a state change, player one makes a move
gameForPlayerl.move();

// And verify turn is now the opposite player
assertThat(gameForPlayerl.getPlayerInTurn(), is(value: “Findus™});
AU CS assertThat (gameForPlayer2.getPlayerInTurn(), is(value: “Findus")); 8

eV The Positive Viewpoint

AARHUS UNIVERSITET

* Let us approach the problem from the viewpoint of status:
what does work on the ship? [Apollo 13 Movie @]
— What can our Broker already handle?

« Three Java interfaces in the GamelLobby system
— ¥Yep: We can make ClientProxies and Servants for the three roles
» GamelLobby, FutureGame, Game
— ¥Yep: Marshalling method names, arguments
— ¥Yep: IPC, nothing new here either

— Invoker: Quite a few methods in the invoker, but Yep, we can do
that — just put more if’s into the thing...

eV But...

AARHUS UNIVERSITET
« The BB is the method call on client:
FﬁtureG;me ;layeriFuture = lobby.:réei+33ﬂ5(”:ederzen“, 9),

assertThat(playeriFuture, is(not(nullValue()))),;

" FutureGame JcreateGame(String playerName, int playerLevel);

* On the server, createGame(), will create and return a
FutureGame instance, but we cannot pass by reference.
— We can only pass by value
e Strings, integers, DTO/POJO, Record type (json stuff)
* On the client, we only can have ClientProxies, right?

— If we pass-by-value ‘player1Future’ then no interactions across

the two clients, just get a copy on their local machine...
AU CS Henrik Baerbak Christensen 10

/v Revisit

AARHUS UNIVERSITET
« This is the deep and hard problem

« We create an object on the server
(object reference to something on the
java heap (=a memory address!))...

 But a memory address/object

reference is only valid on the server :Client

— A pass-by-value of it does not make
sense on the heap of the client!

AU CS Henrik Baerbak Christensen 11

/v The Insight

AARHUS UNIVERSITET
« The key insight is

— How does ClientProxies address their associate Servant objects?
Through the ‘objectld’ parameter of the requestor call...

° SO_

If you do not see this right away...
It is because it is one of those ‘aha’ things ©

AU CS Henrik Baerbak Christensen 12

/v Client: GameLobbyProxy

AARHUS UNIVERSITET
« S0, the ClientProxy code becomes

@0verride
publie FutureGame createGame(String playerName, int playerlevel) |

otring id =
requestor . sendRequestAndAwaitReply("none™,
MarshallingConstant . GAMELOBEY_CREATE_GAME_METHOD,

String.class, playerName, playerlLevel);

(2B s B e T

FutureGame proxy = new FutureGameProxy(id, requestor);

return proxy;

That is, objectld replaces object reference

AU CS Henrik Baerbak Christensen 13

L o TR B o T

/v The Concept

AARHUS UNIVERSITET

« Concept/ Template

— ClientProxy methods that return object references must
» 1) Get an objectld from the server
« 2) Create an appropriate ClientProxy, and assign that objectld to it

1 a0verride

2 publiec FutureGame createGame(String playerName, int playerlLevel) |

otring id =

4 requestor . sendRequestAndAwaitReply("none”,
5 MarshallingConstant.GAMELOBBY_ CREATE_GAME_METHOD,

otring.class, playerName, playerlLevel);

i FutureGame proxy = new FutureGameProxy(id, requestor);

8 return proxy;

AU CS Henrik Baerbak Christensen 14

Y ClientProxy Constructor

AARHUS UNIVERSITET

« That s, the objectld from the server must be assigned
during client proxy construction, alas, in the constructor

public class FutureGameProxy implements FutureGame, ClientProxy |

private final String objectld;
private final Bequestor requestor;

public FutureGameProxy{String objectld,) BEequestor requestor) |
this.ockjectId = objectId;
this.requestor = requestor;

1

« ... which is then used in all subsequent proxy methods:

@0verride
public String getJoinToken() {
String token = requestor.sendRequestAndAwaitReply(getId(),
MarshallingConstant.FUTUREGAME GET JOIN TORENMETHOD, String.class);
return token;
} public String getId() {
return objectId;

}
AU CS Henrik Baerbak Christensen 15

e

VeV Server: Invoker

AARHUS UNIVERSITET
 The Invoker’s code’s first part is the normal upcall...

if (operationName.equals(MarshallingConstant.GAMELOBEY CREATE_GAME_METHOD)) {
2 String playerName = gson.fromJson(array.get(®), String.class);
int level = gson. fromJson(array.get(1), Integer.class);

4 FutureGame futureGame = lobby.createCGame(playerName, level);
* But, - how do we assign a unique ID to the FutureGame?

e Sigh — we have a new responsibility someone must have

AU CS Henrik Baerbak Christensen 16

/v

| will assign it to.

AARHUS UNIVERSITET
« The Servant object

AU CS

1 public FutureGameServant(String playerName, int playerlLevel) {
2 // Create the object ID to bind server and client side
3 // Servant-ClientProxy objects together
4 id = UUID.randomUUID().toString();
2
6 [...]
7T}
@0verride

public String getId() {

}

That is: Servant objects will generate a
return id; unique objectld during construction; and

provide a ‘getld()’ method...

Henrik Baerbak Christensen

17

eV But...

AARHUS UNIVERSITET

« The responsiblity could have been assigned elsewhere:
— The invoker that generates a unique UUID
— A Name Service that we ask to assign a UUID
— Domain already defines a unique ID
— Storage tier (RDB) generates unique Ids / Primary Key

« As usual in this course, each possible design decision
have certain advantages and disadvantages

« EXercise:
— What disadvantage has my decision? Advantage?

VeV Server: Invoker

AARHUS UNIVERSITET

« Thus the Invoker’s code’s last part is different — instead of
returning the servant’s return value directly, it must return
the return value’s objectid

1 1if (operationName.equals(MarshallingConstant.GAMELOBBY_CREATE_GAME_METHOD)) {
7 String playerName = gson. fromJson(array.get(@), String.class);
int level = gson.fromJson(array.get(1), Integer.class);

4 FutureGame futureGame = lobby.createGame(playerName, level);

string id = futureGame.getId();

reply = new ReplyObject(HttpServletResponse.5C_CREATED,

gson.todsorf(id)),;, *=

FL.]

AU CS Henrik Baerbak Christensen 19

/v Next Issue

AARHUS UNIVERSITET
 ReCap - on the ClientSide

// Lobby object is made in the setup/before method
FutureGame playeriFuture = lobby.createGame("Pedersen”, 0);

assertThat(playeriFuture, is(not(nullValue())));

« But what happens when client uses the playerlfuture?

String joinToken = playeriFuture.getJoinToken(};

« This is now a client side FutureGameProxy
getJoinToken() call...

AU CS Henrik Baerbak Christensen 20

/v Next Issue

AARHUS UNIVERSITET
« But what happens when client uses the playerlfuture?

String joinToken = playeriFuture.getJoinToken();

* FutureGameProxy implementation is easy enough, the
return type is just a String (pass by value)

1 B0verride

2 publie String getJoinToken() {

String token = requestor.sendRequestAndAwaitReply(getId(),
4 MarshallingConstant . FUTUREGAME_GET_JOIN_TOKEN_METHOD,

String.class);

return token;

AU CS Henrik Baerbak Christensen 21

/v

AARHUS UNIVERSITET

But... In the Invoker?

if (operationName.equals(MarshallingConstant.F

FutureGame futureGame F

777

otring token = futureGame.g

etJoinToken();

reply = new ReplyObject(HttpsServletResponse.:

TUREGAME _GET_JOIN_

sJson(token)) ;

« Someone is responsible for knowing the relation between
objectld and actual servant object reference!

— name service ©

« Someone Is responsible for storing the relation.

AU CS

Henrik Baerbak Christensen

22

/v So - Update

AARHUS UNIVERSITET
. ‘ . ',
| let the Invoker update a name service at ‘create time’:
if (operationName.equals(MarshallingConstant.GAMELOBBY CREATE GAME METHOD)) {
String playerName = gson.from)son(array.get(®), String.class);
int level = gson.fromJson{array.get(1l), Integer.class); -
FutureGame futureGame = Llobby.createGame(playerName, level); Note: this is in the
String id = futureGame.getId(); ‘createGame’ code
-’ nameService.putFutureGame(id, futureGame); ¢
reply = new ReplyObject(HttpServletResponse.SC CREATED, P“"“i‘ dntarface SRERENEE |
gson .tolson(id}); /** put a future game into the name service under given id

i . . * @param objectId ID of the object
} else if (operationName.equals(MarshallingConstant.GAMELOBBY_ . sparan futureGame the servant object
.y
void putFutureGame(String objectId, FutureGame futureGame);

/** Get a future game.

* @param objectId the id of the servant object to get.
* @greturn the future game with this id.

o A non-distributed NAME SEIrVICE i serrumuresme(string svjectra)

AU CS Henrik Baerbak Christensen 23

eV Final Piece...

AARHUS UNIVERSITET

 Now Invoker code can be completed for handling the
FutureGame’s getJoinToken() method

— Retrieve the object reference based upon the objectld sent by the
client side proxy

— Do the upcall on that particular object
— Marshall the return value and return back to ServerRequestHandl
if (operationName.equals(MarshallingConstant.FUTUREGAME GET JOIN TOKEN METHOD)) {
FutureGame futureGame = nameService.getFutureGame(objectId);

string token = futureGame.getlJoinToken();
reply = new ReplyObject(HttpServletResponse.SC 0K, gson.tolson(token));

AU CS Henrik Baerbak Christensen 24

/v Or - in Pictures...

AARHUS UNIVERSITET
« Server creates a FutureGame in memory at 0106h

Server

futureGame = ?7??

futureGame

CS@AU Henrik Beerbak Christensen 25

/v objectld and NameService

AARHUS UNIVERSITET
« The address is abstracted by a unique id/name

futureGame =
objectld (‘08af’)

NameService

(‘08af’, 0106h)

(‘d772’, 0100h)

futureGame

CS@AU Henrik Beerbak Christensen 26

eV Discussion

AARHUS UNIVERSITET

My name service is an in-memory datastructure
— Does not work if server crashes ©

— Does not work in case of horizontal scaling
« That is: Many copies of the same game server

* Production systems need to keep the name service
directory in a tiered persistent system
— Database Slow RDB
— External cache Faster MemCached/Redis
— Internal cache Fastest MemCached/Redis

/v

Discussion
AARHUS UNIVERSITET

« Be aware that for given a given role...

_ «interface» _
2 Role N
Client sid - RN Server side
e s method(a,b.c) ~_
ClientProxy ‘ , ‘ Servant
Domain
method(a,b,c)

method(a,b,c) ‘
I

4

« ... Not all methods are necessarily remote calls!
« Example: method getld()

@Cverride ROverride

pubklic String getId{) | public String getId({) {
return objectId: return id;

}

1

AU CS Henrik Baerbak Christensen

28

/v

Exercise
AARHUS UNIVERSITET
« Example: method getld()

ClientProxy Servant
@Cverride ROverride
pubklic String getId{) | public String getId({) {
return objectId: return id;
}

1

» EXxercise:

— Why is it extremely stupid to make the client side proxy ‘getld()’
Into a remote method?

AU CS Henrik Baerbak Christensen 29

/v Role Interfaces Again

AARHUS UNIVERSITET

« Both our Servant and Proxy objects must be ‘identifiable’,
ala, implement the ‘getld()’ method...

¢ Ir] rT1)/ F1()t55t()r163 I f]Ei\/EB package hotstone.roleinterface;
a ROIG Interface for that . [publitl: interface Identifiable {]
String getID();
}

public interface Card extends Effectable, |Identifiable, Attributable {

public interface Hero extends Effectable, |Identifiable |{

AU CS Henrik Baerbak Christensen 30

Vav Pass-by-Ref — but only one way

AARHUS UNIVERSITET
e So - status... What can we do?

— Pass by value
* From Server to Client ala return values
* From Client to Server ala arguments in parameter lists

— Pass by reference
* From Server to Client ala objectld, proxies, name service
* From Client to Server yes and no!

VeV Client-to-Server References

AARHUS UNIVERSITET
« We actually have two cases

— A) Client creates an object, pass the ref to the server

— B) Client pass the ref of an object on the server to the server

« The first case, A), is not possible with FRDS.Broker.

 The second case, B), is OK.
— Exercise: What should the client then pass to the server?

eV Client-to-Server References

AARHUS UNIVERSITET

[f you have a method in which a parameter is a server side object, ala this
one:

Game game = futureGame.getGame();
lobbyProxy.tellIWantTol eave(game);

Then your proxy code of course shall just send the objectld to the server. This
will allow the server side invoker to lookup the proper server object, and pass
that to the equivalent tel11wantToLeave() method of the servant object.

AU CS Henrik Baerbak Christensen 33

/v

AARHUS UNIVERSITET
* Recipe:
— createObiject()

AU CS

Summary

Transferring Server Created Objects

Consider a remote method classB create() In classaA, that is, a method that
creates new instances of ClassB.

To transfer a reference to an object created on the server side, you must
follow this template

- Make the Class B Servant objecf] generate a unique ID upon creation
(typically in the constructor using id = UUID.randomUUID(). toString();, OT by
the domain/database providing one), and provide an accessor method
for it, like get1da(). Often, it does make sense to include the getid()
method in the interface, as the ClientProxy object also needs the ID
when calling the Requestor.

- Once a servant object is created, it must|be stored in a name service

using the unique id as key.)
+ In the Invoker implementation of classa.create(), use a String as return
type marshalling format, and jus{ transfer the unique object id backJto

the client.
- On the client side, in the ClassAProxy, create a instance of the ClassB-

ientProxy, and|store the transferred unique id in the proxy object, pnd

return that to the caller.) _])
- Client code can now communicate with the Class B servant object using

the returned client proxy object.
« When the server’s Invoker receives a method call on some created

object, it must use the provided object1d to ffetch the servant object from
the name service, and call the appropriate method on 1t.

34

/v

AARHUS UNIVERSITET

:ServerRegHandl

“send(L) LT

Summary

‘ :NameService

Server Side
:Invoker ‘ ‘ AServant ‘
T T
| |
1 | |
receive()] |
handleRequest ‘ |
> . |
' demarshall |
|
‘ create() I <<create>>
e -‘j = :BServan
|
getld() !
} | "
id i store(id, b)
]
) |
marshall |
|
id |
|
|
|
|

Transferring Server Created Objects - Server side

-rlj

AU CS

Henrik Baerbak Christensen

35

Y Summary

AARHUS UNIVERSITET
Client Side
:AClientProxy :Requestor :ClientRegHandl
T I T
create() - : |
9 - request(..) | | ™
- _ | | object id returned ‘]
marshall [;
- '
-..

et |
demarshall :
S ——— L= |
id <<create>> |
S I |

b T L™ | |

| ClientProxy created | |

: with the given id |

|

| | I !

Transferring Server Created Objects - Client side

AU CS Henrik Baerbak Christensen 36

Y Summary

AARHUS UNIVERSITET
* Recipe:
— getObject() (just getting a server side object)

Consider aremote method c1assB getB() INClassA, thatis, a method that return
references to instances of ClassB.

To transfer a reference to an object created on the server side, you must
follow this template

+ In the Invoker implementation of ciassaA.getB(), retrieve the objectld of
the ClassB instance, and use a String as return type marshalling format,
and just transfer the unique object id back to the client.

AU CS Henrik Baerbak Christensen 37

/v The Proxy Explosion

AARHUS UNIVERSITET

) One |Ssue public Card getCardInHand(Player who, int indexInHand) {
String cardId =
reguestor.sendRequestAndAwaitReply(objectId,
OperationNames.GAME_GET_CARD_IN_HAND,
String.class,

who, indexInHand);

return new CardClientProxy(requestor, cardId);

 If | call this twenty times on the same (who, index), how
many proxy objects do | create?

« What is the issue here?
— Is it a big problem?

— Sitill, can it be avoided?

AU CS Henrik Baerbak Christensen 38

/v

AARHUS UNIVERSITET

The Client-Server Argument

Java RMI - and
Why it was a bad idea ©
(Or a good idea that was misused)

ot Java RMI

AARHUS UNIVERSITET
» ldea:
— Let Java generate the [mresanl
ClientProxy and _ N Role A .
|nVOkeI‘! Client side /// method(a.b.c) \\\\ Server side
. ientProx ‘ . ‘ Servant
« Let your Role interface | > Dorai
)) method(a,b.c) ‘ method(ab.c)
extend "Remote | 7
— l.e. you have already |
high coupling to RMI ® an | (gt]
- Normal Java compile .
— Will call ‘rmic’ tool which ‘m N :
will generate (see next T ookl == - .
slide...)

CS@AU Henrik Baerbak Christensen 40

eV That is...

AARHUS UNIVERSITET
* The ‘rmic’ compiler will produce not one class file but two:

<
e ~o
PR S~o
s S~o
- S~o
-7 =
- Sso
s ~o
~
- S~
_ *

As well as provide library classes of

the rest of the roles: Requestor,
Client- and ServerRequestHandler RoleServant

CS@AU Henrik Beerbak Christensen 41

/v CORBA/RMI/.NET Remoting

AARHUS UNIVERSITET

- Early Broker systems strove to achieve one abillity:
— Transparency

 |deally, you program as you normally do in OO, ignoring the fact
that some objects where on the server

« Thus any (remote) object may invoke methods on any
other (remote) object.
* Observer pattern is a good case

— Game game = new MyFantasticHotCivGame(...);
— Drawing drawing = new CivDrawing(game);
— game.addGameObserver(drawing);

« Now game and drawing can call each other, and will!

/v This I1s not Client-Server

AARHUS UNIVERSITET

» Client-Server Architecture
— Many active clients that queries a single reactive server

« But the observer pattern is two way
— Both client and server are active and reactive

GameProxy __ playCard

GameServant

GameObserver onPIayCard

Now Server is active and call the
client! A Peer2Peer

AU CS Henrik Baerbak Christensen Architecture! 43

eV The Peer2Peer

AARHUS UNIVERSITET

 Benefits

— Now we can actually code a server, which updates the GUI on
the client!

GameProxy playCard

GameServant

HotStoneDrawing:
GameObserver onPlayCard

AU CS Henrik Baerbak Christensen 44

eV, But...
AARHUS UNIVERSITET

 The system is more fragile!

— Clients come and go all the time while servers are much more resilient
(ideally stay powered on forever, never crash).
« Lots of server logic to handle disappearing clients
— Servers becomes tightly coupled to clients
« Server behaviour relying on behaviour on clients
— Scaling the server is difficult
« The server becomes statefull (has to know it’s clients)
» Horizontal scaling (more servers) is therefore harder
— Performance suffers
« Server calling 100.000 clients is slow!
— Security is harder
« The server invokes code on my machine!

eV But...

AARHUS UNIVERSITET

« A personal belief (no scientific facts here) is that the
transparency aspect of RMI lead architects to create ‘big
ball of mud’ networks of interconnected remote objects

¢ Why?
— Because the semantics is so much different
* Methods falil
» Methods execute 275 times slower
« Methods may be controlled by hackers...

AU CS Henrik Baerbak Christensen 46

VeV And Coders Then Chose REST!

AARHUS UNIVERSITET
« REST is ‘using HTTP as intended’

 REST architecture is a pure client-server architecture

— You always pass data purely by value

» Mediatypes like XML, HTML, JSON
— "No” security issue

— You never see the server call back to you

AARHUS UNIVERSITET
* So... To code remote systems...

« ... Software architects must carefully and explicitly decide
which method calls/objects are remote!

« Thus, adding the extra ‘generate ID’ behaviour in our
remote objects are in line with this explicity...

eV And — of course

AARHUS UNIVERSITET

* ... You sometimes need ‘calling back to clients’

— Games are a good example
« Servers call back to clients when opponents do stuff!

— Streaming vido/audio
— Web feeds, chats fora, ...

« Lot of tricks to actually do so
— “Comet’, long polling, server-sent events, WebSockets, ...

AU CS Henrik Baerbak Christensen 49

	Slide 1: Software Engineering and Architecture
	Slide 2: TeleMed Limitations
	Slide 3: New Case: GameLobby
	Slide 4: Dynamics
	Slide 5: New Case: GameLobby
	Slide 6: (SideBar)
	Slide 7: Roles
	Slide 8: Test Code View (Client side)
	Slide 9: The Positive Viewpoint
	Slide 10: But...
	Slide 11: Revisit
	Slide 12: The Insight
	Slide 13: Client: GameLobbyProxy
	Slide 14: The Concept
	Slide 15: ClientProxy Constructor
	Slide 16: Server: Invoker
	Slide 17: I will assign it to...
	Slide 18: But...
	Slide 19: Server: Invoker
	Slide 20: Next Issue
	Slide 21: Next Issue
	Slide 22: But... In the Invoker?
	Slide 23: So - Update
	Slide 24: Final Piece...
	Slide 25: Or - in Pictures…
	Slide 26: objectId and NameService
	Slide 27: Discussion
	Slide 28: Discussion
	Slide 29: Exercise
	Slide 30: Role Interfaces Again
	Slide 31: Pass-by-Ref – but only one way
	Slide 32: Client-to-Server References
	Slide 33: Client-to-Server References
	Slide 34: Summary
	Slide 35: Summary
	Slide 36: Summary
	Slide 37: Summary
	Slide 38: The Proxy Explosion
	Slide 39: The Client-Server Argument
	Slide 40: Java RMI
	Slide 41: That is…
	Slide 42: CORBA/RMI/.NET Remoting
	Slide 43: This is not Client-Server
	Slide 44: The Peer2Peer
	Slide 45: But…
	Slide 46: But…
	Slide 47: And Coders Then Chose REST!
	Slide 48: So
	Slide 49: And – of course

