
Software Engineering

and Architecture

Broker II

Object References

TeleMed Limitations

• TeleMed was a three-wheeled bicycle ☺

– Only one object :TeleMedServant

– Only one class TeleMedServant

– Object id was given by domain Patients unique ID

• That is, CPR is provide to TeleMed – allow getting Inger’s data…

• We need to ride an ‘ordinary bicycle’, like HotStone

– Multiple objects Multiple Cards, Heroes

– Multiple classes Card, Hero, ...

– ‘new StandardCard()’ On the server!

AU CS Henrik Bærbak Christensen 2

New Case: GameLobby

AU CS Henrik Bærbak Christensen 3

Dynamics

• Side note

– Perhaps a bit

‘convoluted’ design

but…

– Lots of ‘remote

references’ to pass

to the clients…

AU CS Henrik Bærbak Christensen 4

New Case: GameLobby

AU CS Henrik Bærbak Christensen 5

Challenge:
a) Server creates game object

b) But only when two players enrolled

… by creating a ‘FutureGame’ object as stepping
stone

(SideBar)

• Actually, I used a similar system to implement the

(crude!) lobby system for the hotstone.littleworld.dk game

server

AU CS Henrik Bærbak Christensen 6

Roles

AU CS Henrik Bærbak Christensen 7

Test Code View (Client side)

AU CS Henrik Bærbak Christensen 8

Pedersen must tell
Findus what the

token is…

The Positive Viewpoint

• Let us approach the problem from the viewpoint of status:

what does work on the ship? [Apollo 13 Movie ☺]

– What can our Broker already handle?

• Three Java interfaces in the GameLobby system

– Yep: We can make ClientProxies and Servants for the three roles

• GameLobby, FutureGame, Game

– Yep: Marshalling method names, arguments

– Yep: IPC, nothing new here either

– Invoker: Quite a few methods in the invoker, but Yep, we can do

that – just put more if’s into the thing...

AU CS Henrik Bærbak Christensen 9

But...

• The culprit is the method call on client:

• On the server, createGame(), will create and return a

FutureGame instance, but we cannot pass by reference.

– We can only pass by value

• Strings, integers, DTO/POJO, Record type (json stuff)

• On the client, we only can have ClientProxies, right?

– If we pass-by-value ‘player1Future’ then no interactions across

the two clients, just get a copy on their local machine…
AU CS Henrik Bærbak Christensen 10

Revisit

• This is the deep and hard problem

• We create an object on the server

(object reference to something on the

java heap (=a memory address!))...

• But a memory address/object

reference is only valid on the server

– A pass-by-value of it does not make

sense on the heap of the client!

AU CS Henrik Bærbak Christensen 11

:FG

:Server

:Client

?

The Insight

• The key insight is

– How does ClientProxies address their associate Servant objects?

Through the ‘objectId’ parameter of the requestor call…

• So –

– the server must return a unique objectId of the object, not a

reference to it

– the client proxy must create a proxy, and associate it with that

particular objectId

AU CS Henrik Bærbak Christensen 12

If you do not see this right away...
It is because it is one of those ‘aha’ things☺

Client: GameLobbyProxy

• So, the ClientProxy code becomes

AU CS Henrik Bærbak Christensen 13

That is, objectId replaces object reference

The Concept

• Concept / Template

– ClientProxy methods that return object references must

• 1) Get an objectId from the server

• 2) Create an appropriate ClientProxy, and assign that objectId to it

AU CS Henrik Bærbak Christensen 14

ClientProxy Constructor

• That is, the objectId from the server must be assigned

during client proxy construction, alas, in the constructor

• … which is then used in all subsequent proxy methods:

AU CS Henrik Bærbak Christensen 15

Server: Invoker

• The Invoker’s code’s first part is the normal upcall...

• But, - how do we assign a unique ID to the FutureGame?

• Sigh – we have a new responsibility someone must have

AU CS Henrik Bærbak Christensen 16

I will assign it to...

• The Servant object

AU CS Henrik Bærbak Christensen 17

That is: Servant objects will generate a
unique objectId during construction; and

provide a ‘getId()’ method...

But...

• The responsiblity could have been assigned elsewhere:

– The invoker that generates a unique UUID

– A Name Service that we ask to assign a UUID

– Domain already defines a unique ID

– Storage tier (RDB) generates unique Ids / Primary Key

– ...

• As usual in this course, each possible design decision

have certain advantages and disadvantages

• Exercise:

– What disadvantage has my decision? Advantage?

AU CS Henrik Bærbak Christensen 18

Server: Invoker

• Thus the Invoker’s code’s last part is different – instead of

returning the servant’s return value directly, it must return

the return value’s objectId

AU CS Henrik Bærbak Christensen 19

Next Issue

• ReCap – on the ClientSide

• But what happens when client uses the player1future?

• This is now a client side FutureGameProxy

getJoinToken() call...

AU CS Henrik Bærbak Christensen 20

?

Next Issue

• But what happens when client uses the player1future?

• FutureGameProxy implementation is easy enough, the

return type is just a String (pass by value)

AU CS Henrik Bærbak Christensen 21

?

But... In the Invoker?

• Someone is responsible for knowing the relation between

objectId and actual servant object reference!

– name service ☺

• Someone is responsible for storing the relation.

AU CS Henrik Bærbak Christensen 22

• I let the Invoker update a name service at ‘create time’:

• A non-distributed name service

So - Update

AU CS Henrik Bærbak Christensen 23

Note: this is in the
‘createGame’ code

Final Piece...

• Now Invoker code can be completed for handling the

FutureGame’s getJoinToken() method

– Retrieve the object reference based upon the objectId sent by the

client side proxy

– Do the upcall on that particular object

– Marshall the return value and return back to ServerRequestHandl

AU CS Henrik Bærbak Christensen 24

Server

Or - in Pictures…

• Server creates a FutureGame in memory at 0106h

CS@AU Henrik Bærbak Christensen 25

0100h

0102h

0104h

0106h

futureGame = ????

Client

futureGame

Server

objectId and NameService

• The address is abstracted by a unique id/name

CS@AU Henrik Bærbak Christensen 26

0100h

0102h

0104h

0106h

futureGame =
objectId (‘08af’)

Client

(‘08af’, 0106h)

(‘d772’, 0100h)
’08af’

futureGame

NameService

Discussion

• My name service is an in-memory datastructure

– Does not work if server crashes ☺

– Does not work in case of horizontal scaling

• That is: Many copies of the same game server

• Production systems need to keep the name service

directory in a tiered persistent system

– Database Slow RDB

– External cache Faster MemCached/Redis

– Internal cache Fastest MemCached/Redis

AU CS Henrik Bærbak Christensen 27

Discussion

• Be aware that for given a given role...

• ... Not all methods are necessarily remote calls!

• Example: method getId()

AU CS Henrik Bærbak Christensen 28

ClientProxy Servant

Exercise

• Example: method getId()

• Exercise:

– Why is it extremely stupid to make the client side proxy ‘getId()’

into a remote method?

AU CS Henrik Bærbak Christensen 29

ClientProxy Servant

Role Interfaces Again

• Both our Servant and Proxy objects must be ‘identifiable’,

ala, implement the ‘getId()’ method…

• In my HotStone I have

a Role Interface for that…

AU CS Henrik Bærbak Christensen 30

Pass-by-Ref – but only one way

• So – status… What can we do?

– Pass by value

• From Server to Client ala return values

• From Client to Server ala arguments in parameter lists

– Pass by reference

• From Server to Client ala objectId, proxies, name service

• From Client to Server yes and no!

AU CS Henrik Bærbak Christensen 31

Client-to-Server References

• We actually have two cases

– A) Client creates an object, pass the ref to the server

– B) Client pass the ref of an object on the server to the server

• The first case, A), is not possible with FRDS.Broker.

• The second case, B), is OK.

– Exercise: What should the client then pass to the server?

AU CS Henrik Bærbak Christensen 32

Client-to-Server References

AU CS Henrik Bærbak Christensen 33

Summary

• Recipe:

– createObject()

AU CS Henrik Bærbak Christensen 34

Summary

AU CS Henrik Bærbak Christensen 35

Summary

AU CS Henrik Bærbak Christensen 36

Summary

• Recipe:

– getObject() (just getting a server side object)

AU CS Henrik Bærbak Christensen 37

The Proxy Explosion

• One issue:

• If I call this twenty times on the same (who, index), how

many proxy objects do I create?

• What is the issue here?

– Is it a big problem?

– Still, can it be avoided?

AU CS Henrik Bærbak Christensen 38

The Client-Server Argument

Java RMI - and

Why it was a bad idea ☺

(Or a good idea that was misused)

Java RMI

• Idea:

– Let Java generate the

ClientProxy and

Invoker!

• Let your Role interface

extend ”Remote”

– I.e. you have already

high coupling to RMI

• Normal Java compile

– Will call ‘rmic’ tool which

will generate (see next

slide…)

CS@AU Henrik Bærbak Christensen 40

<<interface>>
Remote

That is…

• The ‘rmic’ compiler will produce not one class file but two:

CS@AU Henrik Bærbak Christensen 41

Client

<<interface>>

Role

foo()

RoleClientProxy RoleSkeleton (invoker)

RoleServant

As well as provide library classes of
the rest of the roles: Requestor,

Client- and ServerRequestHandler

CORBA/RMI/.NET Remoting

• Early Broker systems strove to achieve one ability:

– Transparency

• Ideally, you program as you normally do in OO, ignoring the fact

that some objects where on the server

• Thus any (remote) object may invoke methods on any

other (remote) object.

• Observer pattern is a good case

– Game game = new MyFantasticHotCivGame(…);

– Drawing drawing = new CivDrawing(game);

– game.addGameObserver(drawing);

• Now game and drawing can call each other, and will!

AU CS Henrik Bærbak Christensen 42

This is not Client-Server

• Client-Server Architecture

– Many active clients that queries a single reactive server

• But the observer pattern is two way

– Both client and server are active and reactive

AU CS Henrik Bærbak Christensen 43

GameServant

GameObserver

playCardGameProxy

onPlayCard

Now Server is active and call the
client! A Peer2Peer

Architecture!

The Peer2Peer

• Benefits

– Now we can actually code a server, which updates the GUI on

the client!

AU CS Henrik Bærbak Christensen 44

GameServant

HotStoneDrawing:
GameObserver

playCardGameProxy

onPlayCard

But…

• The system is more fragile!

– Clients come and go all the time while servers are much more resilient

(ideally stay powered on forever, never crash).

• Lots of server logic to handle disappearing clients

– Servers becomes tightly coupled to clients

• Server behaviour relying on behaviour on clients

– Scaling the server is difficult

• The server becomes statefull (has to know it’s clients)

• Horizontal scaling (more servers) is therefore harder

– Performance suffers

• Server calling 100.000 clients is slow!

– Security is harder

• The server invokes code on my machine!

AU CS Henrik Bærbak Christensen 45

But…

• A personal belief (no scientific facts here) is that the

transparency aspect of RMI lead architects to create ‘big

ball of mud’ networks of interconnected remote objects

– You need to be extremely aware when method invocations are

remote and when not!

• Why?

– Because the semantics is so much different

• Methods fail

• Methods execute 275 times slower

• Methods may be controlled by hackers…

AU CS Henrik Bærbak Christensen 46

And Coders Then Chose REST!

• REST is ‘using HTTP as intended’

• REST architecture is a pure client-server architecture

– You always pass data purely by value

• Mediatypes like XML, HTML, JSON

– ”No” security issue

– You never see the server call back to you

AU CS Henrik Bærbak Christensen 47

So

• So... To code remote systems…

• ... Software architects must carefully and explicitly decide

which method calls/objects are remote!

• Thus, adding the extra ‘generate ID’ behaviour in our

remote objects are in line with this explicity...

AU CS Henrik Bærbak Christensen 48

And – of course

• … You sometimes need ‘calling back to clients’

– Games are a good example

• Servers call back to clients when opponents do stuff!

– Streaming vido/audio

– Web feeds, chats fora, …

• Lot of tricks to actually do so

– “Comet”, long polling, server-sent events, WebSockets, …

• Morale: Do it if necessary, not by accident!

AU CS Henrik Bærbak Christensen 49

	Slide 1: Software Engineering and Architecture
	Slide 2: TeleMed Limitations
	Slide 3: New Case: GameLobby
	Slide 4: Dynamics
	Slide 5: New Case: GameLobby
	Slide 6: (SideBar)
	Slide 7: Roles
	Slide 8: Test Code View (Client side)
	Slide 9: The Positive Viewpoint
	Slide 10: But...
	Slide 11: Revisit
	Slide 12: The Insight
	Slide 13: Client: GameLobbyProxy
	Slide 14: The Concept
	Slide 15: ClientProxy Constructor
	Slide 16: Server: Invoker
	Slide 17: I will assign it to...
	Slide 18: But...
	Slide 19: Server: Invoker
	Slide 20: Next Issue
	Slide 21: Next Issue
	Slide 22: But... In the Invoker?
	Slide 23: So - Update
	Slide 24: Final Piece...
	Slide 25: Or - in Pictures…
	Slide 26: objectId and NameService
	Slide 27: Discussion
	Slide 28: Discussion
	Slide 29: Exercise
	Slide 30: Role Interfaces Again
	Slide 31: Pass-by-Ref – but only one way
	Slide 32: Client-to-Server References
	Slide 33: Client-to-Server References
	Slide 34: Summary
	Slide 35: Summary
	Slide 36: Summary
	Slide 37: Summary
	Slide 38: The Proxy Explosion
	Slide 39: The Client-Server Argument
	Slide 40: Java RMI
	Slide 41: That is…
	Slide 42: CORBA/RMI/.NET Remoting
	Slide 43: This is not Client-Server
	Slide 44: The Peer2Peer
	Slide 45: But…
	Slide 46: But…
	Slide 47: And Coders Then Chose REST!
	Slide 48: So
	Slide 49: And – of course

