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Object References



TeleMed Limitations

• TeleMed was a three-wheeled bicycle ☺

– Only one object    :TeleMedServant

– Only one class    TeleMedServant

– Object id was given by domain  Patients unique ID

• That is, CPR is provide to TeleMed – allow getting Inger’s data…

• We need to ride an ‘ordinary bicycle’, like HotStone

– Multiple objects    Multiple Cards, Heroes

– Multiple classes    Card, Hero, ...

– ‘new StandardCard()’   On the server!
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New Case: GameLobby
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Dynamics

• Side note

– Perhaps a bit

‘convoluted’ design

but…

– Lots of ‘remote 

references’ to pass

to the clients…
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New Case: GameLobby
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Challenge:
a) Server creates game object

b) But only when two players enrolled

… by creating a ‘FutureGame’ object as stepping 
stone



(SideBar)

• Actually, I used a similar system to implement the 

(crude!) lobby system for the hotstone.littleworld.dk game 

server
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Roles
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Test Code View (Client side)
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Pedersen must tell 
Findus what the 

token is…



The Positive Viewpoint

• Let us approach the problem from the viewpoint of status: 

what does work on the ship? [Apollo 13 Movie ☺]

– What can our Broker already handle?

• Three Java interfaces in the GameLobby system 

– Yep: We can make ClientProxies and Servants for the three roles

• GameLobby, FutureGame, Game

– Yep: Marshalling method names, arguments

– Yep: IPC, nothing new here either

– Invoker: Quite a few methods in the invoker, but Yep, we can do 

that – just put more if’s into the thing...
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But...

• The culprit is the method call on client:

• On the server, createGame(), will create and return a 

FutureGame instance, but we cannot pass by reference.

– We can only pass by value

• Strings, integers, DTO/POJO, Record type (json stuff)

• On the client, we only can have ClientProxies, right?

– If we pass-by-value ‘player1Future’ then no interactions across 

the two clients, just get a copy on their local machine…
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Revisit

• This is the deep and hard problem

• We create an object on the server 

(object reference to something on the 

java heap (=a memory address!))...

• But a memory address/object 

reference is only valid on the server

– A pass-by-value of it does not make 

sense on the heap of the client!
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:FG

:Server

:Client

?



The Insight

• The key insight is

– How does ClientProxies address their associate Servant objects? 

Through the ‘objectId’ parameter of the requestor call…

• So – 

– the server must return a unique objectId of the object, not a 

reference to it

– the client proxy must create a proxy, and associate it with that 

particular objectId
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If you do not see this right away...
It is because it is one of those ‘aha’ things☺



Client: GameLobbyProxy

• So, the ClientProxy code becomes
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That is, objectId replaces object reference



The Concept

• Concept / Template

– ClientProxy methods that return object references must

• 1) Get an objectId from the server

• 2) Create an appropriate ClientProxy, and assign that objectId to it
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ClientProxy Constructor

• That is, the objectId from the server must be assigned 

during client proxy construction, alas, in the constructor

• … which is then used in all subsequent proxy methods:
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Server: Invoker

• The Invoker’s code’s first part is the normal upcall...

• But, - how do we assign a unique ID to the FutureGame?

• Sigh – we have a new responsibility someone must have
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I will assign it to...

• The Servant object
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That is: Servant objects will generate a 
unique objectId during construction; and 

provide a ‘getId()’ method...



But...

• The responsiblity could have been assigned elsewhere:

– The invoker that generates a unique UUID

– A Name Service that we ask to assign a UUID

– Domain already defines a unique ID

– Storage tier (RDB) generates unique Ids / Primary Key

– ...

• As usual in this course, each possible design decision 

have certain advantages and disadvantages

• Exercise:

– What disadvantage has my decision? Advantage?
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Server: Invoker

• Thus the Invoker’s code’s last part is different – instead of 

returning the servant’s return value directly, it must return 

the return value’s objectId
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Next Issue

• ReCap – on the ClientSide

• But what happens when client uses the player1future?

• This is now a client side FutureGameProxy 

getJoinToken() call...
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?



Next Issue

• But what happens when client uses the player1future?

• FutureGameProxy implementation is easy enough, the 

return type is just a String (pass by value)
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?



But... In the Invoker?

• Someone is responsible for knowing the relation between 

objectId and actual servant object reference!

– name service ☺

• Someone is responsible for storing the relation.
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• I let the Invoker update a name service at ‘create time’:

• A non-distributed name service

So - Update
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Note: this is in the 
‘createGame’ code



Final Piece...

• Now Invoker code can be completed for handling the 

FutureGame’s getJoinToken() method

– Retrieve the object reference based upon the objectId sent by the 

client side proxy

– Do the upcall on that particular object

– Marshall the return value and return back to ServerRequestHandl
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Server

Or - in Pictures…

• Server creates a FutureGame in memory at 0106h
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0100h

0102h

0104h

0106h

futureGame = ????

Client

futureGame



Server

objectId and NameService

• The address is abstracted by a unique id/name
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0100h

0102h

0104h

0106h

futureGame = 
objectId (‘08af’)

Client

(‘08af’, 0106h)

(‘d772’, 0100h)
’08af’

futureGame

NameService



Discussion

• My name service is an in-memory datastructure

– Does not work if server crashes ☺

– Does not work in case of horizontal scaling

• That is: Many copies of the same game server

• Production systems need to keep the name service 

directory in a tiered persistent system 

– Database  Slow  RDB

– External cache  Faster  MemCached/Redis

– Internal cache  Fastest  MemCached/Redis
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Discussion

• Be aware that for given a given role...

• ... Not all methods are necessarily remote calls!

• Example: method getId()
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ClientProxy Servant



Exercise

• Example: method getId()

• Exercise:

– Why is it extremely stupid to make the client side proxy ‘getId()’ 

into a remote method?
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ClientProxy Servant



Role Interfaces Again

• Both our Servant and Proxy objects must be ‘identifiable’, 

ala, implement the ‘getId()’ method…

• In my HotStone I have

a Role Interface for that…
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Pass-by-Ref – but only one way

• So – status… What can we do?

– Pass by value

• From Server to Client  ala return values

• From Client to Server  ala arguments in parameter lists

– Pass by reference

• From Server to Client  ala objectId, proxies, name service

• From Client to Server  yes and no!
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Client-to-Server References

• We actually have two cases

– A) Client creates an object, pass the ref to the server

– B) Client pass the ref of an object on the server to the server

• The first case, A), is not possible with FRDS.Broker.

• The second case, B), is OK.

– Exercise: What should the client then pass to the server?
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Client-to-Server References
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Summary

• Recipe:

– createObject()
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Summary
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Summary
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Summary

• Recipe:

– getObject() (just getting a server side object)
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The Proxy Explosion

• One issue:

• If I call this twenty times on the same (who, index), how 

many proxy objects do I create?

• What is the issue here?

– Is it a big problem?

– Still, can it be avoided?
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The Client-Server Argument

Java RMI - and

Why it was a bad idea ☺

(Or a good idea that was misused)



Java RMI

• Idea: 

– Let Java generate the 

ClientProxy and 

Invoker!

• Let your Role interface 

extend ”Remote”

– I.e. you have already 

high coupling to RMI 

• Normal Java compile

– Will call ‘rmic’ tool which 

will generate (see next 

slide…)
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<<interface>>
Remote



That is…

• The ‘rmic’ compiler will produce not one class file but two:
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Client

<<interface>>

Role

foo()

RoleClientProxy RoleSkeleton (invoker)

RoleServant

As well as provide library classes of 
the rest of the roles: Requestor, 

Client- and ServerRequestHandler



CORBA/RMI/.NET Remoting

• Early Broker systems strove to achieve one ability:

– Transparency

• Ideally, you program as you normally do in OO, ignoring the fact 

that some objects where on the server

• Thus any (remote) object may invoke methods on any 

other (remote) object.

• Observer pattern is a good case

– Game game = new MyFantasticHotCivGame(…);

– Drawing drawing = new CivDrawing(game);

– game.addGameObserver(drawing);

• Now game and drawing can call each other, and will!
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This is not Client-Server

• Client-Server Architecture

– Many active clients that queries a single reactive server

• But the observer pattern is two way

– Both client and server are active and reactive
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GameServant

GameObserver

playCardGameProxy

onPlayCard

Now Server is active and call the 
client! A Peer2Peer 

Architecture!



The Peer2Peer

• Benefits

– Now we can actually code a server, which updates the GUI on 

the client!

AU CS Henrik Bærbak Christensen 44

GameServant

HotStoneDrawing:
GameObserver

playCardGameProxy

onPlayCard



But…

• The system is more fragile!

– Clients come and go all the time while servers are much more resilient 

(ideally stay powered on forever, never crash).

• Lots of server logic to handle disappearing clients

– Servers becomes tightly coupled to clients

• Server behaviour relying on behaviour on clients

– Scaling the server is difficult

• The server becomes statefull (has to know it’s clients)

• Horizontal scaling (more servers) is therefore harder

– Performance suffers

• Server calling 100.000 clients is slow!

– Security is harder

• The server invokes code on my machine!
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But…

• A personal belief (no scientific facts here) is that the 

transparency aspect of RMI lead architects to create ‘big 

ball of mud’ networks of interconnected remote objects

– You need to be extremely aware when method invocations are 

remote and when not!

• Why?

– Because the semantics is so much different

• Methods fail

• Methods execute 275 times slower

• Methods may be controlled by hackers…
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And Coders Then Chose REST!

• REST is ‘using HTTP as intended’

• REST architecture is a pure client-server architecture

– You always pass data purely by value

• Mediatypes like XML, HTML, JSON

– ”No” security issue

– You never see the server call back to you
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So

• So... To code remote systems…

• ... Software architects must carefully and explicitly decide 

which method calls/objects are remote!

• Thus, adding the extra ‘generate ID’ behaviour in our 

remote objects are in line with this explicity...
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And – of course

• … You sometimes need ‘calling back to clients’

– Games are a good example

• Servers call back to clients when opponents do stuff!

– Streaming vido/audio

– Web feeds, chats fora, …

• Lot of tricks to actually do so

– “Comet”, long polling, server-sent events, WebSockets, …

• Morale: Do it if necessary, not by accident!
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